On General Plane Fronted Waves. Geodesics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On General Plane Fronted Waves. Geodesics

A general class of Lorentzian metrics, M0 ×R, 〈·, ·〉z = 〈·, ·〉x + 2 du dv + H (x, u) du2, with (M0, 〈·, ·〉x ) any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity causal character of connecting geodesics. These results ...

متن کامل

ar X iv : g r - qc / 0 21 10 17 v 2 5 M ar 2 00 3 On general Plane Fronted Waves . Geodesics

A general class of Lorentzian metrics, M0 × R 2 , ·, ·z = ·, ·x + 2 du dv + H(x, u) du 2 , with (M0, ·, ·x) any Riemannian mani-fold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity or causal character of connecting geodesics. These result...

متن کامل

Generalized plane-fronted gravitational waves in any dimension

We study the gravitational waves in spacetimes of arbitrary dimension. They generalize the pp-waves and the Kundt waves, obtained earlier in four dimensions. Explicit solutions of the Einstein and Einstein-Maxwell equations are derived for an arbitrary cosmological constant. PACS: 04.50.+h, 04.30.-w.

متن کامل

Exact Solutions of Noncommutative Vacuum Einstein Field Equations and Plane-fronted Gravitational Waves

We construct a class of exact solutions of the noncommutative vacuum Einstein field equations, which are noncommutative analogues of the plane-fronted gravitational waves in classical gravity.

متن کامل

Causality and Conjugate Points in General Plane Waves

Let M = M0 × R be a pp–wave type spacetime endowed with the metric 〈·, ·〉z = 〈·, ·〉x + 2 du dv + H(x, u) du, where (M0, 〈·, ·〉x) is any Riemannian manifold and H(x, u) an arbitrary function. We show that the behaviour of H(x, u) at spatial infinity determines the causality of M, say: (a) if −H(x, u) behaves subquadratically (i.e, essentially −H(x, u) ≤ R1(u)|x|2− for some > 0 and large distance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: General Relativity and Gravitation

سال: 2003

ISSN: 0001-7701,1572-9532

DOI: 10.1023/a:1022962017685